Copied to
clipboard

G = C3312M4(2)  order 432 = 24·33

2nd semidirect product of C33 and M4(2) acting via M4(2)/C22=C4

metabelian, soluble, monomial

Aliases: C3312M4(2), C62.13Dic3, C334C89C2, (C3×C62).4C4, C3⋊Dic3.43D6, C3⋊Dic3.8Dic3, C22.(C33⋊C4), C32(C62.C4), C327(C4.Dic3), C6.13(C2×C32⋊C4), (C2×C6).5(C32⋊C4), (C3×C3⋊Dic3).7C4, C2.6(C2×C33⋊C4), (C2×C3⋊Dic3).11S3, (C6×C3⋊Dic3).11C2, (C32×C6).20(C2×C4), (C3×C6).27(C2×Dic3), (C3×C3⋊Dic3).51C22, SmallGroup(432,640)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C3312M4(2)
C1C3C33C32×C6C3×C3⋊Dic3C334C8 — C3312M4(2)
C33C32×C6 — C3312M4(2)
C1C2C22

Generators and relations for C3312M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=ab-1, ae=ea, bc=cb, dbd-1=a-1b-1, be=eb, dcd-1=c-1, ce=ec, ede=d5 >

Subgroups: 392 in 92 conjugacy classes, 21 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C2×C6, C2×C6, M4(2), C3×C6, C3×C6, C3⋊C8, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C62, C62, C4.Dic3, C32×C6, C32×C6, C322C8, C6×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C3×C62, C62.C4, C334C8, C6×C3⋊Dic3, C3312M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C2×Dic3, C32⋊C4, C4.Dic3, C2×C32⋊C4, C33⋊C4, C62.C4, C2×C33⋊C4, C3312M4(2)

Permutation representations of C3312M4(2)
On 24 points - transitive group 24T1287
Generators in S24
(1 22 10)(2 11 23)(3 12 24)(4 17 13)(5 18 14)(6 15 19)(7 16 20)(8 21 9)
(1 10 22)(3 24 12)(5 14 18)(7 20 16)
(1 22 10)(2 11 23)(3 24 12)(4 13 17)(5 18 14)(6 15 19)(7 20 16)(8 9 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)

G:=sub<Sym(24)| (1,22,10)(2,11,23)(3,12,24)(4,17,13)(5,18,14)(6,15,19)(7,16,20)(8,21,9), (1,10,22)(3,24,12)(5,14,18)(7,20,16), (1,22,10)(2,11,23)(3,24,12)(4,13,17)(5,18,14)(6,15,19)(7,20,16)(8,9,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)>;

G:=Group( (1,22,10)(2,11,23)(3,12,24)(4,17,13)(5,18,14)(6,15,19)(7,16,20)(8,21,9), (1,10,22)(3,24,12)(5,14,18)(7,20,16), (1,22,10)(2,11,23)(3,24,12)(4,13,17)(5,18,14)(6,15,19)(7,20,16)(8,9,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23) );

G=PermutationGroup([[(1,22,10),(2,11,23),(3,12,24),(4,17,13),(5,18,14),(6,15,19),(7,16,20),(8,21,9)], [(1,10,22),(3,24,12),(5,14,18),(7,20,16)], [(1,22,10),(2,11,23),(3,24,12),(4,13,17),(5,18,14),(6,15,19),(7,20,16),(8,9,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23)]])

G:=TransitiveGroup(24,1287);

42 conjugacy classes

class 1 2A2B3A3B···3G4A4B4C6A6B6C6D···6U8A8B8C8D12A12B12C12D
order12233···34446666···6888812121212
size11224···499182224···45454545418181818

42 irreducible representations

dim11111222222444444
type++++-+-++-
imageC1C2C2C4C4S3Dic3D6Dic3M4(2)C4.Dic3C32⋊C4C2×C32⋊C4C33⋊C4C62.C4C2×C33⋊C4C3312M4(2)
kernelC3312M4(2)C334C8C6×C3⋊Dic3C3×C3⋊Dic3C3×C62C2×C3⋊Dic3C3⋊Dic3C3⋊Dic3C62C33C32C2×C6C6C22C3C2C1
# reps12122111124224448

Matrix representation of C3312M4(2) in GL4(𝔽7) generated by

3243
4556
3361
0001
,
0526
0202
3361
0004
,
3632
6342
0020
0004
,
3610
3314
4355
2253
,
0632
6042
0060
0001
G:=sub<GL(4,GF(7))| [3,4,3,0,2,5,3,0,4,5,6,0,3,6,1,1],[0,0,3,0,5,2,3,0,2,0,6,0,6,2,1,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[3,3,4,2,6,3,3,2,1,1,5,5,0,4,5,3],[0,6,0,0,6,0,0,0,3,4,6,0,2,2,0,1] >;

C3312M4(2) in GAP, Magma, Sage, TeX

C_3^3\rtimes_{12}M_4(2)
% in TeX

G:=Group("C3^3:12M4(2)");
// GroupNames label

G:=SmallGroup(432,640);
// by ID

G=gap.SmallGroup(432,640);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,141,58,2804,298,2693,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,a*e=e*a,b*c=c*b,d*b*d^-1=a^-1*b^-1,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^5>;
// generators/relations

׿
×
𝔽